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Abstract

In this study, we focus on the class of BL-GARCH models,
which is initially introduced by Storti & Vitale [11] in order to
handle a leverage e¤ects and volatility clustering. First we illus-
trate some properties of BL-GARCH(1,2) model, like the positiv-
ity, stationarity and marginal distribution, then we�ll study the
statistical inference, applying the composite likelihood on panel
of BL-GARCH(1,2) model.
Keywords: Random coe¢ cient Autoregressive model; BL-

GARCH models; composite likelihood.

1 Introduction

Classical modelling of time series is not usually appropriate for �nancial
data, such as ARMA models do not allow the variability in volatil-
ity over time, are not able to capture asymmetries in the conditional
variance of �nancial time series, and fail to generate the squared au-
tocorrelations. In front of these monetry and �nancial problems, Engle
[1982] proposed a new class of Autoregressive conditionally heteroscedas-
tic models (ARCH), followed by generalized ARCH or GARCH sug-
gested by Bollerslev [1986]. Storti and Vitale [2003] proposed an innova-
tive approach to modelling laverage e¤ects in �nancial time series based
on the Bilinear GARCH noted by BL � GARCH models which are
considered as a generalization of GARCH models.
In this present paper we study the BL�GARCH models, speci�cally

BL�GARCH (1; 2) that is widely used and proved its prformance for
the volatility analysis of �nancial time series. We focus on studies of
Storti & Vitale [2003] and Diongue &Guégan and Wol¤ [2009], which
they have well discussed and treated this class of models.
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In recent years, several authors have been interested in composite
muximum likelihood methods that are widely used in parametric sta-
tistical inference because of the good asymptotic properties of the esti-
mators. The aim of composite likelihood is to reduce and simplify the
computational complexity to cope with lage datasets and presence of
complex interdependencies.
The term pseudo-likelihood was originally proposed by Besag [1974].

Lindsay [1988] used the term composite likelihood for justify his choice
to discribe the method of construction consdered. There are many re-
search and studies in various �elds, have applied this method, for exam-
ple in statistical genetics (Larribe and Fearnhead 2011), in time series
(Richard, Davis and Chun Yip Yau 2011) and (Pakel, Shephard and
Sheppard 2011), in langitidunal data (Molenberghs and Verbeke 2005).
We organize this work as �ollows. In Section 2 we study the im-

portant properties of BL�GARCH (1; 2) concerning conditions for the
positivity of conditional variance, conditions of stationarity and we con-
clude this section by the properties of marginal distribution. In Section
3 we introduce the BL�GARCH (1; 2) panel model, then we illustrate
the good perfofmance of estimators of composite likelihoodapplied to
this model.

2 Properties of BL�GARCH (1; 2)

we consider the asset log-returns yt at time t, assuming that

yt=�t + ut where �t = E (yt=
t�1) (2-1)

ut=ht"t (2-2)

h2t = a0 + a1u
2
t�1 + b1h

2
t�1 + b2h

2
t�2 + c1ut�1ht�1 (2-3)

where 
t�1 is the historical information set up to time t� 1.

2.1 Positivity of Conditional variance
We can write the model (2-3) in matrix form as :

h2t = [1; ut�1; ht�1; ht�2]

2664
a0 0 0 0
0 a1

1
2
c1 0

0 1
2
c1 b1 0

0 0 0 b2

3775
2664
1
ut�1
ht�1
ht�2

3775 (2-4)

=K 0
tAKt
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Proposition 1 A su¢ cient set of conditions for positivity of conditional
variance h2t is :

a0 > 0 ; a1 > 0 ; b1 > 0 ; b2 > 0 ; c21 > 4a1b1 (2-5)

Proof. We note that h2t > 0 if and only if A is a positive de�nite matrix
and this implies that all eigenvalues of A are strictly positive.
Set of these eigenvalues are :�
a0 ; b2 ;

1

2

�
a1 + b1 �

q
a21 � 2a1b1 + b21 + c21

�
;
1

2

�
a1 + b1 +

q
a21 � 2a1b1 + b21 + c21

��

2.2 Stationarity
We can rewrite the BL�GARCH(1; 2) as

h2t = a0 + (a1"
2
t�1 + b1 + c1"t�1)h

2
t�1 + b2h

2
t�2

h2t = g("t�1) + c("t�1)h
2
t�1 + d("t�1)h

2
t�2

which is a random coe¢ cient autoregressive model of second order [RCAR(2)].
we put : h2t = Xt ; g("t�1) = et ; c("t�1) = �1 and d("t�1) = �2, we
have

Xt = �1Xt�1 + �2Xt�2 + et (2-6)

�
Xt

Xt�1

�
=

�
�1 �2
1 0

��
Xt�1
Xt�2

�
+

�
et
0

�
X t=�X t�1 + et (2-7)

Vt= a0 [I2 �	B]�1

with E (X t) = Vt, E (�) = 	 and B is backward operator. This implies
that its eigenvalues are in the unit cercle.
So in order to the process be second order stationariry if and only if all
eigenvalues are within unit cercle.
We can also rewrite the BL�GARCH(1; 2) as

Zt = bt + AtZt�1 (2-8)2664
u2t
h2t
h2t�1
utht

3775 =
2664
a0"t
a0
0
a0

3775+
2664
a1"

2
t b1"

2
t b2"

2
t c1"

2
t

a1 b1 b2 c1
0 1 0 0
a1"t b1"t b2"t c1"t

3775
2664

u2t�1
h2t�1
h2t�2

ut�1ht�1

3775 (2-9)
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Remark 2 (i) At is (p+ q + r)� (p+ q + r) matrix and r = min(p; q)
in general case of BL�GARCH(p; q) model.
(ii) Equation (2-8) is random coe¢ cient V AR(1).
(iii) Iosifescu and Grigorescu (1990) proved that (Zt)t>1 is a Markov
process

Theorem 3 (Strict Stationarity)
In order to exist a strict stationary solution of equation (2-8) it is nec-
essary and su¢ cient that


 < 0 (2-10)

where 
 = limt!+1
1
t
log kAtAt�1:::A1k, is the largest Lyapunov expo-

nent of the model (2-8).
If this solution exists, then it is unique strictly stationary,non anticipa-
tive and ergodic.

Proof. See [3].

Example 4 For the BL-GARCH(2,1) we consider the matrix

At =

2664
a1"

2
t b1"

2
t b2"

2
t c1"

2
t

a1 b1 b2 c1
0 1 0 0
a1"t b1"t b2"t c1"t

3775
for some values attributed to the coe¢ cients a1; b1; b2 ; c1 we can simulateb
 and "t s N(0; 1) or "t s tn.
Estimation of 
 from 1000 simulations of size t = 1000.

This simulation does know us the region of stationarity of BL �
GARCH(1; 2)

If a1+b1+b2 = 1, there is no stationary solution (strict or 2nd order),
while there is a strictly stationary solution of an IGARCH model under
general conditions.

2.3 Marginal distribution

From (2-8) and by recursive, we have

Zt = bt +
+1X
k=1

AtAt�1:::At�k+1bt�k

we put, for k > 0,

At;k = AtAt�1:::At�k+1 and Zt;k = At;kbt�k
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we denote 
 the Kronecker product and kk matrix norm, then

E


Zt;k

m=E 

A
mt;k b
mt�k

 = E 

A
mt A
mt�1:::A


m
t�k+1b


m
t�k




=



A(m)b(m)




using product matricies independence AtAt�1:::At�k+1bt�k (because ("t)
are iid), we have

kZtkm= [E kZtk
m]
1=m

=
1X
k=0



Zt;k

m
6
( 1X
k=0




�A(m)�k


1=m)


b(m)


1=m
If the spectral radius �

�
A(m)

�
< 1 of the matrix A(m), then




�A(m)�k


!
0 as k ! +1, thus kutkm 6 kZtkm. So �

�
A(m)

�
< 1 is su¢ cient con-

dition for the exisrence of E (u2mt ). For more details, it is recommended
to refer to [3].

Theorem 5 Suppose that E ("2mt ) and �
�
A(m)

�
< 1, then for each t�Z,

(Zt)t de�ned by (2-8) converge in L
m and the process (u2t )t de�ned as

the �rst component of Zt is 2m�order strictly stationary solution.

we make a simulation given some values of coe¢ cients and a distri-
bution of "t in order to calculate �

�
A(m)

�
, E ("2mt ), and E (u

2m
t )

3 The BL-GARCH Panel

We assumed that we have panel of asset returns with T observations and
N assets. The return on asset i at time t is yit where i = 1; :::; N and
t = 1; :::; T , given by

yit=�it + uit

uit=hit"it

h2it= a0i (1� a1 � b1 � b2) + a1u2it�1 + b1h2it�1 + b2h2it�2 + c1uit�1hit�1(3-1)

where a0i > 0, a1 + b1 + b2 < 1, a1, b1, b2 2 [0; 1[ and c1 > 2a1b1.
We consider a0i as a nuisance parameters and � = (a1; b1; b2; c1) as a
vector of interest parameters. Using the covariance tracking suggested
by Engle and Mezrich (1996), we have

E(y2it) = a0i (3-2)
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then we can use the method of moment to estimate the nuisance pa-
rameter. According to Barndor¤-Nielson (1996), Lancaster (2000) and
Sartori (2003) in thier papers, they assumed a stochastic independence
over i and t. Then the maximum likelihood estimator of � is typically
incosistent for �nite T and N !1. In order to overcome this problem
and get a consistent estimator Engle, Shephard and Sheppard (2008)
allowed that T to be large and N relates to T and reduce th rate of
convergence to

p
T not

p
NT , noted in [2], followed by the same study

and consideration of Pakel, Shephard and Sheppard (2011).

3.1 Composite maximum likelihood

In this subsection we apply composite maximum likelihood method, that
is widely used in time series in place of full likelihood when for exam-
ple we want to reduce the computational complexity, or make inference
about parameters of interest without making assumptions on the whole
joint distribution of the data.
Given the data y = (y1; y2; :::; yT ) where yt = (y1t; y2t; :::; yNt) and let
f (yit�
i;t�1) be the conditional density for yit, we put �i = (ai0; �) and
�(N) = (�1; �2; :::; �N). Our estimation procedure focuses on two-step.
We begin by application of moment method to estimate nuisance para-
meters using (*), then we apply composite likelihood to estimate � which
is de�ned by

CL
�
y; �(N)

�
=
1

T

TX
t=1

"
1

N

NX
i=1

log f (yit�
i;t�1;�i)

#
(3-3)

In our situation we use the variation-free as Engle, Shephard and Shep-
pard (2008) and Engle, Hendry and Richard (1983), then we obtain the
composite maximum likelihood estimator by solving

b�CL = argmax
�

1

T

TX
t=1

1

N

NX
i=1

log f (yit�
i;t�1;bai0; �) (3-4)

where bai0 for each i is obtained by solving
TX
t=1

Qit (�;bai0) = 0
From (3-2) we have

Qit (�; ai0)= y
2
it � a0i ; E (Qit (�; a�i0)) = 0 (3-5)

1

T

TX
t=1

Qit (�;bai0)= 0 (3-6)
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where a�i0 is the true value of ai0 for each i. Stacking (3-5) for i =

1; :::; N ,we have

Q(N)
�
yt; �(N)

�
=

264 y
2
1t � a01
...

y2Nt � a0N

375 =) E
�
Q(N)

�
yt; �

�
(N)

��
= 0 (3-7)

On the other hand, for the interest parameter �,we use composite likeli-
hood, considering the following three typical distributions :
* The score function for the normal density composite likelihood function
is

W1

�
yt; �; �(N)

�
=
@

@�

1

N

 
�1
2

NX
i=1

log h2it �
1

2

NX
i=1

u2it
h2it

!
(3-8)

* The score function for the cauchy density composite likelihood function
is

W2

�
yt; �; �(N)

�
=
@

@�

 
�N log � +

NX
i=1

log hit �
NX
i=1

log
�
h2it + u

2
it

�!
(3-9)

* The score function for the student density composite likelihood func-
tion is

W3

�
yt; �; �(N)

�
=
@

@�
N

 
log �

�
� + 1

2

�
� log �

��
2

�
� h2it �

1

2

NX
i=1

u2it
h2it

!
(3-10)

For i = 1; 2; 3 we put
Wi

�
yt; �; b�(N)� = 0 (3-11)

where b�(N) is a moment estimator
The sample moment conditions for each of (3-8), (3-9) and (3-10) are
given by

1

T

TX
t=1

Wi

�
yt;b�; b�(N)� = 0 ; for i = 1; 2; 3 (3-12)

We put

Ki

�
yt; �

�; ��(N)
�
=

24 Q(N)
�
yt; �

�
(N)

�
Wi

�
yt; �

�; ��(N)
�
35

Then we imply that

E
�
Ki

�
yt; �

�; ��(N)
��
= 0 and

1

T

TX
t=1

Ki

�
yt;b�; b�(N)� = 0 ; for i = 1; 2; 3
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(3-6) and (3-11) are the �rst order condition for the maximisation prob-
lem of (3-4).

3.2 Asymptotic behavior

In this subsection we attempt to obtain the asymptotic properties of
composite likelihood estimator, based on a reasonable initial moment
estimator for nuisance parameters. We show under which initial condi-
tions to have a consistent estimator and asymptotic normality with the
standard root-T convergence rate and N can potentially increase with
T .
Engle, Shephard and Sheppard (2008) have obtained consistency prop-
erty and central limit theorem for b�CL under some regularity conditions,
and also Billy Wu, Qiwei Yao and Shiwu Zhu (2013). Through the
following two fundamental theorems, we will show the consistency and
central limit theorem for b�CL when T ! 1 while N can potentially
increase with T .

Theorem 6 We consider the following assumptions
(i) The condition (3-5) holds.
(ii) We assume that the parameters spaces are compacts.
(iii) Suppose that

argmax
1

TN

TX
t=1

NX
i=1

log f (yit�
i;t�1; a�i0; �) p�! ��

(iv) log f (yit�
i;t�1; ai0; �) is continuously di¤erentiable in ai0
(v) Assume that the following sum satis�es a weak law large number
as T !1

1

T

TX
t=1

1

N

NX
i=1

sup
ai0;�

����@ log f (yit�
i;t�1; ai0; �)@ai0

����
(vi) Assume that

sup
�

max
i2f1;:::;Ng

jbai0 � ai0j p�! 0

then there exists a solution of the likelihood equation (3-11), for which

b� p�! ��
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Proof. See [2].

Theorem 7 For any consistent solution of the likelihood equation (3-
11), we assume that
(i) Qit (�; ai0) is once continuously di¤erentiable.
(ii) (a�i0; �

�) is an interior point of (�i ��).
(iii) we put

Yt;T =
1

N

NX
i=1

"
@ log f (yit�
i;t�1; ai0; �)

@�0
�
 
1

T

TX
t=1

@2 log f (yit�
i;t�1; ai0; �)
@�@ai0

!
Qit (�; ai0)

#

Di;��;T =

"
1

T

TX
t=1

@2 log f (yit�
i;t�1; ai0; �)
@�@�0

#

�
"
1

T

TX
t=1

@2 log f (yit�
i;t�1; ai0; �)
@�@ai0

#"
1

T

TX
t=1

@2Qit (�; ai0)

@�0

#

D��;T =
1

N

NX
i=1

Di;��;T

(iv) we assume that (Yt;T ) obeys a central limit theorem i.e

1

T

TX
t=1

Yt;T d�! N (0; I��)

where I�� is assumed that has diagonal elements de�nite positive.
(v) That as T !1 ; D��;T d�! D��>0; whereD��isinvertible

Then
p
T
�b� � �� d�! N

�
0; D�1

�� I��D
�1
��

�
Proof. The demonstration is well detailed in [2].

Conclusion 8 Through this work we have tried to study, in the �rst
part the fundamental probabilistic properties of BL-GARCH(1,2), basing
on studies of Abdou Kâ Diongue, D. Guégan and R.C. Wol¤ (2009) and
G. Storti & Vitale (2003), that have been made in this class of models.
In the second part, we have studied the statistical inference, extending
the model on panel data structure, using one of e¢ cient method well
called composite likelihood that was introduced by Lindsay (1988), this
method has good properties under some general regularity conditions as
the consistensy property and the asymptotic normality of estimators.
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